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Abstract

The introduction of new safety legislation in Russia has been accompanied by R&D into risk
assessment, especially needed when dealing with high-toxicity substances. In the present article,
two models for evaluation of the dose absorbed by recipients as a result of instantaneous releases
and short-term continuous emissions of toxicant to the atmosphere are developed. The models
have the form of definite integrals with Green’s function. The numerical problem of evaluation of
the absorbed dose with obtained models is reduced to the calculation of single definite integrals. It
is shown that under similar initial conditions, the dose absorbed as a result of instantaneous
discharge is greater than the dose resulting in a short-term continuous emission of toxicant. An
interval approach is developed to estimate the sensitivity of the numerical results to the errors in
empirical parameters and variables included in the models. On the base of introduced definitions
of interval variables, interval vectors and interval functions, interval estimates for absorbed dose
are developed. It is shown that there exists an optimal number of terms in empirical equations with
inexact parameters. Numerical examples of interval analysis are given. q 2000 Published by
Elsevier Science B.V.
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1. Introduction

Ž .The release of dioxine at the industrial plant near Seveso North Italy on June 10,
1976 resulted in severe environment pollution and soil contamination. Many people
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were affected by the dioxine. After this accident, a general concern by the population of
Western Europe resulted in a critical analysis by the European Community of legisla-
tion, codes and acts related with industrial risk, accident hazards, prevention and
mitigation. As a result of this work, the Seveso-1 Directive1 has been prepared and
published in 1982 and came into effect in 1984. In 1996, the European Union has
adopted a new Directive2 regulating major chemical accident hazards, which was to be
enforced in early 1999. The Directive implementation has resulted in essential improve-
ments in the control of accident hazards in the EU.

But also all over Europe, the Seveso Directive was giving the incentive to safety
promotion, and further international agreements in the frame of UN-ECE co-operation.3

As a result, the national law AOn industrial safetyB of the Russian Federation is similar
to the Seveso-2 Directive and came into effect on June 21, 1997. This law interdicts to
construct, maintain and restructure any industrial plant without the certificate of
industrial safety issued by the authoritative expert commission. This certificate requires
detailed evaluation of accident risks in a given plant and the availability of the sets of
measures needed for accident prevention and risk reduction. However, scientific works
on the development of mathematical models and respective software have been started
by Russian scientists long before the introduction of the above-mentioned certificate.
They take into account both international results and experience matured within the
Russian Federation.

The investigations related to this subject are carried out in the State Research Institute
Ž .on Organic Chemistry SRIOCT of the Russian Federation with financial support of the

Ž .Russian government and the International Scientific and Technology Center ISTC at
Moscow. Risk analysis has been adopted as the conceptual framework to approach the
regulatory requirements. This includes the following steps:

Ø initial analysis of the main hazards of contamination and accidents in a given
industrial plant;

Ø analysis of the consequences of possible accidents;
Ø evaluation of frequency andror probability of accidents;
Ø risk assessment and development of measures of prevention and mitigation.

The second step of this procedure is based on the dynamic mathematical models for
the description of the accident as a function of time. These models include explicit and
implicit relationships, differential equations, definite integrals, etc. To evaluate the risk,
it is necessary to solve linear and non-linear equations, to determine the extreme of
functions, etc. All these problems need to be solved despite of inadequate empirical data,
i.e. under uncertainty.

1 Directive 82r501rEEC.
2 Seveso-2 Directive 96r82rEC.
3 United Nations: Convention on the Transboundary Effects of Industrial Accidents done at Helsinki, on 17

March 1992. ErECEr1268.
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The suggested procedure has been applied to the evaluation of risk connected with
the storage and facilities for the destruction of the chemical weapons.

Chemical weapons have been mostly stored and accumulated in the USA and the
former Soviet Union. They constitute a severe hazard for all humankind. On April 1997,
the International Convention on the Interdiction of the Design, Production, Accumula-
tion and Use of the Chemical Weapons come to the force. On November 7, 1997, it was
ratified by the Russian Federation. Moreover, the Russian Federation has taken the
obligation during 10 years to completely destroy all chemical weapons, which have been
accumulated in seven arsenals in the different regions of Russia. Of course, the
destruction of chemical weapons in an environmental friendly way is a problem with
which many other countries are presently confronted. The interested reader is referred to

w xa recent NATOrISTC workshop on the subject 1 .
In Russia, the State Scientific Institute on Organic Chemistry is defined as a leading

research institute on the technology and equipment design of plants related with the
annihilation of the chemical weapons. The SRIOCT team played a leading role during
evaluation of the risk resulting in accumulation and annihilation of chemical weapon.
Particularly, within the years 1998–1999, the team has developed the certificate of
industrial safety for the chemical plant for annihilation of chemical weapons in Kizner
Ž .Udmurt Republic of Russian Federation .

At the present, this project is offering a good opportunity to test and improve the
methodology for evaluation and prediction of the risks from accidents. In certain cases,
the methodological development has resulted in approaches, which differ somewhat
from the ones generally used elsewhere. Indeed the present article describes two models
for evaluation of the dose absorbed by recipients as a result of instantaneous releases
and short-term continuous emissions of toxicant to the atmosphere, which allows the
evaluation of the absorbed dose by the calculation of single definite integrals. Further-
more, an interval approach is developed to estimate the sensitivity of the numerical
results to the uncertainties in empirical parameters and variables included in the models.
Numerical examples of interval analysis are given.

2. Models for instantaneous and short-term toxicant emissions in the air

Harmful effects to people by toxic substances are possible as a result of both
instantaneous release and short-term continuous emission of toxicant to the atmosphere.
The severity of the damage depends on the absorbed inhalation dose.

Let us consider a concentration c of toxicant in the atmosphere at the pointm
™ TŽ .xs x , x , x at the time t. Suppose that the source of instantaneous discharge1 2 3

™X X X X XTŽ . Ž .allocated at the point x s x , x , x releases a toxicant mass M at the time t .1 2 3
w xUnder these assumptions, the concentration c can be written as a function 2 :m

™ ™™X Xc x,t sMG x,x ,ty t , 1Ž . Ž .Ž .m

™™X XŽ .where G x,x ,ty t is a factor of meteorological dilution that coincides with the
w xGreen’s function 3 .
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For example, suppose that the wind is directed with the velocity u along the x axis,1 1

and the pollutant is a neutral gas, which is completely reflected from the soil. Then the
™™X XŽ .function G x,x ,ty t , can be written in the form

™™X XG x,x ,ty tŽ .
2X X1 x yx yu ty tŽ .1 1 1

s exp y X3 2½ 52s ty tŽ .3r2 1X2p s ty tŽ . Ž .Ł i
is1

2 2 2X X Xx yx x yx x qxŽ . Ž . Ž .2 2 3 3 3 3
=exp y exp y qexp y ,X X X2 2 2½ 52s ty t 2s ty t 2s ty tŽ . Ž . Ž .2 3 3

2Ž .
2Ž X.where s ty t is a variance describing the toxic cloud dispersion in the direction ofi

the i-th axis. The variance s 2 as a function of its arguments can be found by fittingi

experimental data.
Let us assume now that the point-allocated source of short-term emissions of toxicant

acts during the time interval, 0F tFT with a constant rate m . Then the concentration0

field at the point x can be described by the equation

t° X X™™m G x,x ,ty t d t , if t-TŽ .H0
0™ ~c x,t s 3Ž . Ž .H
T X X™™m G x,x ,ty t d t , if tGT .Ž .H¢ 0

0

In the case of an instantaneous discharge at the time tX s0, the maximum possible
™w xabsorbed dose within the interval t ,t at the point x is described by the definiteH K

integral

tK X X™ ™™d x sM G x,x ,ty t d t . 4Ž . Ž .Ž .Hm
tH

To evaluate the dose absorbed as a result of short-term emissions of toxicant, it is
necessary to distinguish two cases, according to the end time t for exposure to theK i

Ž . Ž .toxicant: 1 t -T , and 2 t GT.K 1 K 2
Ž .In case 1 , the dose absorbed by the recipient is evaluated as

t tK1 X X X™ ™™d x sm G x,x ,ty t d t d t . 5Ž . Ž .Ž .H HH 1 0
Xt t s0H

Ž .In case 2 , the following equation holds true

T t t TK 2X X X X X X™ ™™ ™™d x sm G x,x ,ty t d t d tqm G x,x ,ty t d t d t . 6Ž . Ž .Ž . Ž .H H H HH 2 0 0
X Xt t s0 T t s0H

In this case, the absorbed dose consists of two parts: the mass of toxicant absorbed
w xduring the emission time interval t ,T and the mass absorbed after that the emissionH

w xhas ceased at its source T ,t .K 2
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Calculation of the absorbed dose for the short-term emission is more complicated
Ž . Ž .than for instantaneous release of toxicant because of double integrals in Eqs. 5 and 6 .

However, it is possible to reduce the double integrals to single ones by variable
Ž . Ž .substitutions because the functions in Eqs. 5 and 6 depend only on the difference

X Ž . Ž .ty t . This allows us first to combine the double integrals 5 and 6 into the general
equation

Is f t ,tX d tXd t , 7Ž . Ž .HH
Ž .D

X ™™X XŽ . Ž .where D is the respective region of integration and f t,t sG x,x ,ty t .
Ž . XThen it is possible to simplify integral 7 by substituting t and t with the new

variables n and m, in one-to-one relationships with the original ones, as follows:

ts t n ,m , tX s tX
n ,m . 8Ž . Ž . Ž .

Ž . Ž . w xSubstituting Eq. 8 into Eq. 7 , we have 4

X < <Is f t n ,m ,t n ,m J n ,m dn dm , 9Ž . Ž . Ž . Ž .Ž .HH
Ž .D

where DX is the region of integration in terms of the new variables n and m, and
< Ž . < Ž .J n ,m denotes the absolute value of Jacobian J n ,m

Et Et

En Em
J n ,m sdet ,Ž . X X

Et Et� 0
En Em

which is a factor of plane mapping.
Using the following substitution in the double integrals

' '2 2
Xts nqm and t s nym , 10Ž . Ž . Ž .

2 2

< Ž . < Ž .we get J n ,m s1, and Eq. 9 is reduced to the form

Is f t n ,m ,tX
n ,m dn dm. 11Ž . Ž . Ž .Ž .HH

Ž .D

Ž . Ž X.Substitution 10 is equivalent to the mapping from the co-ordinate system t,t to
Ž .the new system n ,m , as shown in Fig. 1 that also shows the integration regions.

X Ž . Ž .Region D i.e. the trapezium t ABt corresponds to integral 5 . The sum of1 H K 1
Ž . Ž X .integral 6 has a common region of integration t ACKt D consisting of twoH K 2 2

sub-regions: trapezium t ACT and rectangle TCKt .H K 2

By using the new co-ordinate system, the equation for dose evaluation can be
rewritten as

X™ ™™ 'd x sm G x,x , 2 m dmdn . 12Ž . Ž .Ž .HHH 1 0
XŽ .D1
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Fig. 1. Mapping of co-ordinate system for absorbed dose evaluation.

X™™ 'Ž . Ž . Ž .It follows from Eq. 12 that: 1 function G x,x , 2 m does not depend on variable
Ž .n ; and 2 region t ABt in the new co-ordinate system is a sum of two regions,H K 1

namely rectangle t ABF and triangle t Ft . By taking these properties into account,H H K 1

we finally write the model for the evaluation of the absorbed dose of toxicant when
t -T asK 1

™d xŽ .H 1

tH

'2 '2 t ym X™™K1 'sm dm G x,x , 2 m dnŽ .H H0 '0 2 t ymH

tK1

'2 '2 t ym X™™K1 'qm dm G x,x , 2 m dnŽ .H H0 tH
m

'2

t tH K1X X™™ ™™sm t y t G x,x ,l dlqm G x,x ,l t yl dl, 13Ž . Ž . Ž .Ž . Ž .H H0 K 1 H 0 K 1
0 tH

X'where ls 2 ms ty t , lG0.
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For the particular case when t s0, we haveH

tK1 X™ ™™d x sm G x,x ,Gl t yl dl. 14Ž . Ž . Ž .Ž .HH 1 0 K 1
0

™ XŽ .To calculate absorbed dose d x , the region of integration D should be consid-H 2 2

ered. From Fig. 1, region DX is a polygon t ACKt consisting of trapezium t ACG,2 H K 2 H

parallelogram t GKH, and triangle HKt . Using this splitting, we get the followingH K 2
™Ž .equation for dose d x :H 2

tH X™ ™™d x sm G x,x ,l Ty t ql dlŽ . Ž .Ž .HH 2 0 H
0

t yT tK 2 K 2X X™™ ™™qm T G x,x ,l dlqm G x,x ,l t yl dl. 15Ž . Ž .Ž . Ž .H H0 0 K 2
t t yTH K 2

When t s0, we getH

t yT tK 2 K 2X X™ ™™ ™™d x sm T G x,x ,l dlq G x,x ,l t yl dl. 16Ž . Ž . Ž .Ž . Ž .H HH 2 0 K 2
0 t yTK 2

Thus, the evaluation of the maximum possible absorbed dose under short-term
Ž .continuous emission of toxicant is reduced to the calculation of single intervals 13 and

Ž . Ž . Ž .14 if t -T and to the integrals 15 and 16 in the case t GT.K 1 K 2

The obtained models allow the comparison of the dose of the same toxicant absorbed
by a recipient after an instantaneous release with the dose absorbed after a short-term
continuous emission.

Suppose that the mass M is released at the moment ts0. Then in accordance with
Ž .Eq. 4 , the dose absorbed by the recipient during the time 0F tF t is evaluated asK 1

tK1 X™ ™™d x sM G x,x ,l dl. 17Ž . Ž .Ž .Hm
0

Now suppose that there is a short-term continuous emission of toxicant with rate
Ž . Ž .m sMrt during the same time 0F tF t t -T as before. Due to Eq. 14 in0 K 1 K 1 K 1

this case, we get the following estimate of the absorbed dose

t tK1 K 1X X™ ™™ ™™d x sM G x,x ,l dlym G x,x ,l ldl. 18Ž . Ž .Ž . Ž .H HH 1 0
0 0

Ž . Ž .Comparing Eqs. 17 and 18 , we get the inequality

™ ™d x )d x , 19Ž . Ž . Ž .m H 1

™™XŽ .which is valid because function G x,x ,l l is always positive. Thus, under the given
conditions, the absorbed dose after an instantaneous release of toxicant is greater than
the dose absorbed after a short-term continuous emission of it.
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Ž . Ž .Let us discuss the result 19 . First, it is necessary to stress that Eq. 19 is valid for
™™X XŽ .any kind of function G x,x ,ty t under only two assumptions, namely that:

Ø function G does not depend on the two separate arguments t and tX, but only depends
X Ž .on the difference ty t sl ;

Ø function G is positive and tends to zero when ty tX tends to infinity.

Ž .Thus, the obtained results are valid not only for the functions described by Eq. 2 but
also for all functions that satisfy the constraints given above. In particular, they are valid
for different models of covariance s 2 as a function of time and environmental
conditions, such as the models by Pasquill–Gifford, Briggs or Smith–Hosker.

Second, the above given equations are based on the suggestion that maximum
possible absorbed dose as a function of concentration is described by the equation

™ ™d x s c x,t d t . 20Ž . Ž . Ž .H
t

Ž .However, it is possible to prove that inequality 19 is also valid for the more general
case when

™ ™nd x s c x,t d t , 21Ž . Ž . Ž .H
t

where n is an empirical coefficient that can vary from 1 to 3.
Third, it can be proven that, when the total mass released is equal to that of an

Ž .instantaneous emission, inequality 19 is valid also in the case of a continuous release at
Ž .changing rate m t and in the case of a sequence of instantaneous discharges of toxicant.

Further, such results and conclusions hold true not only for point-allocated sources of
Ž w x.toxicant but also for distributed sources of different shape see Ref. 5 .

3. An introduction to interval analysis

To assess the risk connected with a specific accident, the following analysis steps
should be performed:

Ø Choice of adequate models for the release and diffusion of the toxicant;
Ø Determination of the empirical parameters of the chosen models;
Ø Calculation of the maximum possible absorbed dose and the vulnerability;
Ø Quantification of the risk;
Ø Analysis of the uncertainties and reliability of the final results for the decision

making.

Unfortunately, the last step of this procedure is frequently ignored by the practition-
ers, though it should play a very important role. The goal of this step is to determine the
confidence interval for the risk figure, which allows making a better-informed decision.

The uncertainty in the risk assessment depends on both errors in experimental data
and inaccuracies of the chosen models. For example, let the AtrueB value of the risk be
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Ž .expressed by a function z s f x,b , where x is a set of variables and b a set of0 0

parameters. Then the following sources of errorsruncertainties can be defined:

Ž .Accuracy error of the model zs f x,b chosen from the set of existing empirical
Ž .models z s f x,b describing the diffusion of the toxicant. Generally, neither ofi i

Ž .these models coincides exactly with AtrueB model z s f x,b ;0 0
Ž .Approximation error of the model zs f x,b because of ignoring a number of

variables affecting the diffusion process;
Errors of measurements of the variables x;

ŽErrors of empirical parameters b e.g. resulting particularly from the clustering of the
.environmental conditions into a finite number of clusters ;

Round-off errors.

At present, two basic approaches are applied to the analysis of the uncertainty of the
w xresults, namely, statistical methods and interval analysis 6 . Statistical approaches

usually assume that errors of models are related mainly to uncertainties in experimental
data and empirical parameters b, which are defined as random variables with known

Ž .density functions w b . Under this assumption, the resulting z is also a random value
Ž . Žwith distribution w z . If the models are simple enough and linear for example to be

.expressed as a linear combination of variables and parameters and all variables are
normally distributed, the resulting z will have also a normal distribution. Therefore, it
would be possible to write a confidence interval for the unknown AtrueB value z as0

zy2s Fz Fzq2s , where z is the mean and s is the standard deviation of randomz 0 z z

value z. This interval covers the AtrueB risk value with a 95% confidence probability.
The main advantage of the statistical approach is its analytical formulation and availabil-
ity of effective software packages. However, the application of the statistical methods to
the problem of risk assessment is related with a number of difficulties. First, simple
statistical formulation is based on the assumption of additive errors with normal

Ž .distribution, which frequently is not fulfilled. The model zs f x,b for risk evaluation
is essentially a non-linear one. Under these circumstances, the problem of determining

Ž .the density function w z has no analytical solution. Generally, the statistical approach
does not allow taking into account in a differentiated way systematic and non-statistical
errors, such as round-off errors and clustering approximations, accuracy errors of the
models, etc. The interval approach has no such restrictions. It allows taking into account
errors of any nature, with finite known ranges. For this reason, interval analysis may be
a good alternative to the statistical methods.

The interval analysis introduced below is based on the definition of an interval
w xvariable 6 . Given some numerical constant or variable a whose exact value is unknown

but there are given lower and upper bounds ay, aq of its possible values, then interval

w x w y qx w y qxa s a ;a s a:a FaFa , 22Ž .
w xis called interÕal Õariable denoted as a .

From this definition, it is easy to conclude that the AtrueB value of a certainly
w xbelongs to the interval that is formed by all its possible, i.e. ag a . Certainly, this is

valid under the assumption that the bounds of interval are defined correctly. Thus,
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within interval analysis, the initial object of any operation is not a number as in usual
w xarithmetic and algebra, but interval a . It is necessary to stress that no probabilistic

w xmeasure needs to be defined on interval a .
Different models can be applied for determining the interval bounds depending on a

priori information that is available to the investigator. Sometimes, the point estimate â
of the unknown AtrueB value parameter a and the absolute error D are given such that
< <aya FD. More frequently, the point estimate a and fractional error dsDra areˆ ˆ ˆ

w xgiven. Thus, for the determination of the lower and upper bounds of interval a , one of
the following equations can be applied

y qw x w x w xa s ayD; aqD s a 1yd ; a 1qd s a ; a . 23Ž . Ž . Ž .ˆ ˆ ˆ ˆ
Certainly, there exists one-to-one correspondence between all representations of

interval. Particularly, if bounds ay; aq are given, it is easy to calculate the middle point
Ž y q. Ž q y.of interval as a qa r2 and the absolute error Ds a ya r2. If the point

estimate and either the absolute or fractional error are given, then the bounds ay and
q w xa can be easily calculated. Definition of an interval variable a allows the considera-

™ Tw x Žw w x.tion of an interÕal Õector x s x . . . x , including n interval components1 k
w x w xx . . . x .1 k

™
™w x Ž w x.We need also a definition of an interÕal function z s f x, b , whose argument is

™
™w x w xan interval vector of parameters b . At a fixed value for x, the resulting interval z is

defined as
™ ™ ™ ™ ™ ™

™ ™y qw x w xz s z ; z s min f x,b , bg b ; max f x,b , bg b . 24Ž .Ž . Ž .ž / ž /
b b

Ž .From Eq. 24 , the interval bounds are defined as the two extreme values of the
™

™Ž .function f x,b over all possible values of the parameters b within their given intervals.
For the simplest cases, these bounds can be calculated by the rules of interÕal
arithmetic, as shown in Appendix A.

4. Application of interval analysis to the risk assessment problem

The general procedure for applying interval analysis to the risk assessment problem
includes the following steps:

™™X
Ø Step 1. Determination of measurement errorsruncertainties for variables x, x , M, u1

™ ™XŽ . w x w x w x w xin Eq. 2 and their representation in interval form x , x , M , u .1

Ø Step 2. Choice of empirical models for standard deviations s , s , s entering in1 2 3
Ž .Eq. 2 . Determination of the accuracy error of the model chosen and the errors of the

w Ž .xempirical parameters involved. Determination of the interval functions s t ,1
w Ž .x w Ž .xs t , s t .2 3

™™X Xw Ž .Ø Step 3. Interval representation of the factor of meteorological dilution G x,x ,ty t .
w xØ Step 4. Calculation of interval d for the maximum possible absorbed dose based on

Ž . Ž . w xEq. 15 or Eq. 16 depending on kind of release. Interval d is a non-analytical,
non-linear function of interval parameters and variables:

™ ™Xw x w x w x w x w x w x w x w xd s f x , x , M , u , s , s , s ,t ,T .� 41 1 2 3 k
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w xØ Step 5. Determination of interval value of the probit function Pr .
w xØ Step 6. Calculation of interval R of the risk value for the decision making.

Within the limits of the present paper, it is not possible to give a detailed description
of all steps. Therefore, we focus on the most essential aspects of the algorithm.

™™X Ž .Step 1. The vectors x,x denoting in Eq. 2 the co-ordinates of the source of
discharge and the location of the recipient can be measured within any predefined
accuracy. For this reason, we will assume these variables as exact ones.4

The values of M — mass of toxicant and u — velocity of wind in the direction of1

x axis are major sources of uncertainty. The mass M is mostly estimated by expert1

judgement. The most convenient way to describe its uncertainty is to define the
Ž .fractional error d % . Even being optimistic about the reliability of the judgement, weM

must recognise that this error can be rather large, and we assume it can vary within
5%Fd F50%.M

The value of wind velocity u during the accident under consideration can be derived1

from meteorological monitoring. As a rule, meteorological data are determined as an
average over several hours and over a large area as a town, city, etc. Therefore, the
value u will be known with an unavoidable error. It is reasonable to consider the1

Ž .fractional error of u to be 1%Fd F20%. Using Eq. 21 and assigning the fractional1 U

errors d and d , we can represent both variables in interval formM U

w x w x xM s M 1yd ; M 1qd , u s u 1yd ; u 1qd . 30Ž . Ž . Ž Ž . Ž . Ž .M M 1 1 U 1 U

Step 2. At this step, the interval models for the standard deviations s , s , s of the1 2 3

concentration field should be defined. There are at least three empirical models whose
parameters depend on atmosphere stability class, roughness of spreading surface, and
release features. They are represented by:

b2 is sb x , is1,2,3; 31Ž . Ž .i 1 i 1

c x3 1
s ss s , s sF x ,Z g x , 32Ž . Ž . Ž .1 2 3 1 11q0.0001 x( 1

d1° c xŽ .1 1
ln , if Z)0.1 bd 12 a x1qc x 1 12 1~F x ,Z s , g x s ;Ž . Ž .1 1 b21qa xŽ .1 2 1d1ln c x 1q , if ZF0.11 1 d¢ ½ 52ž /c x2 1

a x1 i 1
s s , is2,3, s ss , 33Ž .ai 1 23 t1qa xŽ .2 i 1

Ž .where x su t is a current distance measured in meters from the release source in the1 1
Ž .direction of the wind; F x ,Z is a corrective factor depending on the roughness length1

4 There would be no great difficulty to consider a possible uncertainty in the exact location of the release as
well.
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Ž .Z measured in meters of the spreading surface; the coefficients a , b , c , d are giveni i i i

in tables as a function of release features for the different models:

Ž . w xmodel 31 is suggested in Ref. 3 ;
Ž . w xmodel 32 , known as a model of Smith–Hosker 2 , is considered as most accurate;
Ž . w xmodel 33 is discussed in Ref. 3 .

To choose the most appropriate model among the available ones, it is necessary to
analyse their accuracy errors with respect to a set of applicable reference data, and to
adopt the simplest model associated with an admissible error.

Ž . Ž . Ž .In the following, we show the comparison of models 31 , 32 and 33 with respect
to the standard deviation s for data corresponding to an atmosphere of stability class2

B.
Ž .The reference data set contained 10 points x , s , is1 . . . 10 that have been1 i 2 i

determined by a numerical simulation of the actual case. For sake of simplicity, these
points hereinafter will be referred to as Atheoretical dataB and considered as an exact
theoretical data set. By multiple regression analysis, the estimates a , b , c that deliveri i 3

the best fitting of theoretical data have been calculated. The resulting values are given
below.

0.996Model 1: s 1 s0.156 xŽ . Ž .2 1

0.16 x1
Model 2: s 2 s ,Ž .2 1q0.0001 x( 1

0.166 x1
Model 3: s 3 s .Ž .2 0.411q0.00016 xŽ .1

Ž .The value predicted by these models and the theoretical data set labelled by squares
are shown in Fig. 2. By comparing the three models, we can state that Model 1 yields a
large deviation from theoretical points for large values of x . For example, for the last1

point x s105 m, the fractional error of this model is 48%. Models 2 and 3 are very1

close to both the theoretical points and each other. To select a single model out the latter
ones, their fractional deviation has been calculated by

< <s 2 ys 3Ž . Ž .2 i 2 i
d i s2 100%, is1 . . . 10. 34Ž . Ž .23 < <s 2 qs 3Ž . Ž .2 i 2 i

We found that models 2 and 3 are very close at the points x and x where their4 6

fractional deviation is less than 0.2%. The maximum deviation, equal to 3.7%, was
found at the point x s105 m. It was also found that neither models have a systematic1

error. Therefore, we can accept that the accuracy error of each model is less than
Ž . Ž . Ž .d s (0.5d i (2%. Since model 32 with one parameter has the same accuracy as2 23

Ž . Ž .model 33 with three parameters, it is reasonable to choose model 32 for the
calculation of variables s and s .1 2
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Fig. 2. Standard deviations for different empirical models.

Besides the accuracy error of the chosen empirical model, the results of its applica-
tion depend on the approximation error of needed empirical parameters. One main
source of these errors is the clustering of the environmental conditions into discrete
classes. As a result, a same single vector of parameters is given to all situations
belonging to a same class.

For example, suppose that an accident occurs during the day time under moderate
Ž . Ž .insolation 25FR F50 . The parameter c in Eq. 32 is defined from tables in Ref.d 3

w x w x2 depending on the wind velocity u mrs , for the following classes: class A–B if
u-2, class B if 2Fu-3, class C–D if 3Fu-4, class C–D if 4Fu-6, D if 6Fu.

Ž .The values of the dotted line that connects the middle point of the classes see Fig. 3
can be seen as AtrueB relation between function parameter c and wind velocity u. The3

difference between this line and the discretised values is an error of clustering. For
Ž .example, for the stability class B ranging over a few discrete values in Fig. 3 , the

Ž .fractional clustering error of parameter c is d c s25%. Thus, the interval of3 clus 3
w x w xŽ . Ž .x w xŽ .x w xuncertainty c is c s c 1yd ; c 1qd s 0.16 1q0.25 s 0.12; 0.2 .3 3 3 clus 3 clus

Using the results of the previous steps, we can write the interval function correspond-
Ž .ing to Eq. 32 as

w x w xc u t3 1 w xs t s s t s 0.98; 1.02 , 35Ž . Ž . Ž .1 2 w x1q0.0001 u t( 1

Ž .where substitution x su t has been made. The last term in Eq. 35 reflects the1 1
Ž .accuracy error of model 32 equal to 2%.
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Fig. 3. The clustering error for the value of parameter c .3

In our sample case, we can write the analytical equations of the lower and upper
bounds as a function of time

y y q qc u t c u t3 1 3 1
s t s s t s 0.98; 1.02 36Ž . Ž . Ž .1 2 y q1q0.0001u t 1q0.0001u t( (1 1

where the bounds uy and uq have been defined in the first step of the procedure.1 1
w x w xThe procedure of determination of the interval function s is similar to that for s3 1

w x Ž . Ž . Ž .and s . But in this case, the product F x ,Z Pg x in Eq. 32 depends on eight2 1 1
Ž .parameters c , d , a , b is1,2 . Therefore, it results in a much wider interval ofi i i i

w x w x w xuncertainty s than intervals s and s .3 1 2
Ž .Step 3. By substituting the interval functions and variables into Eq. 2 , we write the

™™X Xw Ž .xinterval function G x,x ,ty t .
w xStep 4. To get an interval value d of the dose adsorbed by recipients, it is necessary

™™X XŽ . w Ž .xto evaluate integral 15 with interval function G x,x ,ty t . This can be done with
application of known numerical methods and method of Monte-Carlo. For evaluation of
the dose for different possible values of parameters within given intervals, a uniform
distribution generator should be applied. The number of trials can be reduced by taking

Ž .into account that integral 15 is a monotonous function of its upper bound, therefore, is
possible to calculate integral only for the vertex of the prism formed by the interval
parameters.

w xStep 5. The interval probit function Pr , which is usually defined as

w x w x w x w xPr s a q b ln d , 37Ž .
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w xis affected by a number of uncertainties, including uncertainty of the dose d deter-
mined on step 4 and uncertainties of the parameters a, b. Furthermore, a number of
different equations for a same toxicant might have been proposed. To specify interval

w x w xparameter’s values a and b , or to determine a corresponding model accuracy, a
procedure similar to that for step 2 can be applied.

w xStep 6. Usually risk is evaluated as 10
1 Pry5 2yt r2Rs e d t . 38Ž .H'2p y`

Ž .This integral can be written in terms of the error function erf z related with a
standard normal distribution as

w xPr y5
w xR s0.5 1qerf . 39Ž .½ 5ž /'2

y Ž .To get a lower bound of the risk R , it is necessary to substitute into Eq. 39 the
lower bound of probit Pry; to calculate Rq, we substitute Prq.

w xLet us consider a numerical example. In Ref. 10 , the following equation for the
probit function of ethylene oxide is given

Prsaq ln ct sy6.8q ln 4443t , 40Ž . Ž . Ž .
where t is an exposition time. Suppose that a is known and the parameter c is defined

w x w xwithin a 20% error. Then we write its interval as c s 3554; 5331 and the interval
w x Žw x. Ž .probit is defined as Pr sy6.8q ln 3554; 5331 . Substituting it into Eq. 39 , we get

w Ž .xinterval risk R t . This interval function is shown in Fig. 4, where the solid lines show

Fig. 4. Interval function for the risk value.
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Fig. 5. Absolute error of the risk value.

the bounds of the risk value and its average. The decreasing dashed line corresponds to
Ž q y.the fractional error of estimate calculated as 0.5 R yR rR . Fig. 5 shows theaverage

Ž q y.absolute error 0.5 R yR .
By the analysis of these graphs, we can draw the following conclusions.
The fractional error of risk is rather large for small values of risk. Particularly, when

Ž .ts5 min, it is equal to 42%. For average risk equal to 0.5 i.e. times30 min , the
fractional error is 16%. But the value of average risk absolute error has a maximum

Ž .value see Fig. 5 . It is necessary to stress that this statement is valid for any kind of
w xprobit function Pr .

w Ž .xThe interval curve of risk R t shown in Fig. 5 allows us to solve both direct and
inverse problems of risk assessment.

4.1. Direct problem

Find interval risk when exposition time is equal to 30 min. The solution can be
w Ž .x w x w xdetermined from Fig. 4 for ts30 min, which yields R 30 s 0.42; 0.58 . In Ref. 10 ,

it is stated that Rs0.5 for ts30 min. Evidently, that interval representation of risk is
more informative than point estimate.

4.2. InÕerse problem

Find time of exposition such that risk will be equal 40%. From Fig. 4, drawing a
horizontal line through the point Rs0.4, we can find its intersections with interval

w Ž .x w Ž .x wcurve R t . It yields the interval for exposition time equal to t 0.4 s 19 min; 28
xmin .
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Thus, the given example shows that application of interval analysis to the risk
assessment problem is an effective way to get not only point estimates but also interval
of possible values of risk resulting from errors and uncertainties of empirical parameters
and experimental data.

5. Conclusions

In summary, we have proposed mathematical models to evaluate the absorbed
inhalation dose for both instantaneous discharge and short-term emission of toxicants
released from a point-allocated source. Relations between absorbed doses for the two
above given modes of exposure have been also investigated. It has been shown that
under similar initial conditions, the absorbed dose resulting from an instantaneous
release of toxicant is greater than the dose resulting from a short-term continuous
emission of it.

The interval approach has been developed to take into account the unavoidable errors
of empirical parameters included in a mathematical model. It has been shown that this
allows the choice of simpler models, at a same accuracy degree, than models with larger
number of inexact parameters. Numerical examples of interval analysis have been given.
It has been illustrated that interval presentation of the result is much more informative
and correct for problems with empirical parameters than the usual point estimate
presentation.

Appendix A. Operations with interval variables

w x)w x )Let a b denote a generalised arithmetic operation, i.e. the operator means one
Ž . w x w xof the q,y,=,: operations with intervals a , b . Then the resulting interval can be

determined as

w x w x w xc s min a) b ; max a) b , ag a , bg b 25Ž . Ž . Ž .
Ž . w xEq. 25 shows that the resulting interval c is the set of the results of the respective

arithmetic operation performed over all possible values of a and b inside their given
intervals.

w x w xIf the intervals do not include zero, i.e. 0f a , 0f b and all values within the
Ž .intervals are positive, then Eq. 25 results in the following rules:

w x w x w y y q qx2. a q b s a qb ; a qb ;
q yw x w x3. y1 a s ya ; ya ;Ž .

y q q yw x w x w x w x w x4. a y b s a yb ; a yb , a y a s0; 26Ž .
y y q qw x w x w x5. a b s a b ; a b ;

y q q yw x w x w x w x w x6. a r b s a rb ; a rb , a r a s1.

Ž . w x w x w x w x w x w x w xApplying rules 26 to a s 4; 5 and b s 2; 3 , it is easy to get a y b s 1; 3 ,
w xw x w x w x w x w x w x w x wa b s 8; 15 , a r b s 4r3; 5r2 . The result of operations 2; 3 y 2; 3 and 2;
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x w x3 r 2; 3 depends on whether we are dealing with one variable or two. In the case of two
w x w x w x w x w x w x w xvariables with equal bounds a s 2; 3 and b s 2; 3 , we get 2; 3 y 2; 3 s y1; 1

w x w x w x w x w xand 2; 3 r 2; 3 s 2r3; 3r2 . Whereas for the same variable a s 2; 3 , we have
w x w x w x w x Žanother result: 2; 3 y 2; 3 s0 and 2; 3 r 2;3 s1 the difference between the two

cases is that in the last equations, the combinations ayyaq, aqray cannot occur for a
.single variable .

w x w y qx Ž .Generally, the calculation of the bounds z s z ; z in accordance with Eq. 26 is
possible by the use of any mathematical package, for example MATLAB, which
contains Optimisation-Toolbox. But for a number of functions, the bounds can be
written analytically, i.e. in the case that the functions are linear with respect to
parameters as:

™ ™ ™w x w x w x w xz s b q b w x q PPP y b w x q PPP q b w x 27Ž . Ž . Ž . Ž .0 1 1 j j m m

Ž . w xwhere w x are non-negative basic functions, b -interval parameters. For this function,j j
™the following equation for the bounds of the resulting z as a function of vector x is valid

™ ™ ™ ™y y y q yz x sb qb w x q PPP yb w x q PPP qb w x 28aŽ . Ž . Ž . Ž . Ž .0 1 1 j j m m

™ ™ ™ ™q q q y qz x sb qb w x q PPP yb w x q PPP qb w x 28bŽ . Ž . Ž . Ž . Ž .0 i 1 j j m m

Ž . yIt can be seen from Eq. 28a for lower bound z that parameter b enters thisi
y Ž .equation with its lower bound b if the respective term in Eq. 27 is positive and withi

its upper bq otherwise. The inverse situation takes place when calculating upper boundi

zq.
In general, in risk assessment problems, the function called posynomial with interval

w xparameters frequently occurs 7–9
w x w x w xb b b1 2 mw xz s x x PPP x . 29Ž . Ž . Ž . Ž .1 2 m

Ž .Taking a logarithm from both sides of Eq. 29 , we can represent it in the form of Eq.
Ž .27 .
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